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ABSTRACT

We investigate the regularity at time t = 0 of the solutions of linear

and semi-linear evolution equations (including the Stokes and Navier-Stokes

equations). Necessary and sufficient conditions on the data, for an arbitrary

order of regularity are given (the classical "compatibility conditions"). In

the case of the Stokes and Navier-Stokes equations the compatibility conditions

which we find are global conditions on the data. The presentation given here

seems to improve and generalize the known results even in the simplest case of

linear evolution equations.
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SIGNIFICANCE AND EXPLANATION

It is well-known that the heat equation

a - Au = 0, x c Q, t e (0,T)

(*) u = 0 on 0 x (0,T)

u(x,0) = u0 (x), x C 9

possesses some regularizing effects: if u is a square integrable initial datum
0

2
for (*), u 0 E L (0), then the function u(t) : {x e 0 - u(x,t) E PR1, is CO

in 0 x (0,T) (and even in x (0,T) if 30 is C ). However, even if the

00
initial datum u. = u(0) is smooth (say u 0 e C(), the solution u of(*

may not be C or even C in x [0,T]. It is only for special initial data

u0 1 that u will belong to C1 or Ck of 5 x[0,T], those u0 which satisfy

the so-called "compatibility conditions". The study of this question is of

interest in the theory of evolution equations, for singular perturbations and for

the numerical approximation of evolution equations.

For general linear equations and some semi-linear equations (including Stokes

and Navier-Stokes equations), we describe in a simple way the conditions of

regularity at t = 0 of the solutions.

:oion For

I-'RI &I

The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the author of this report.
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BEHAVIOUR AT TIME t = 0 OF THE SOLUTIONS OF

SEMI-LINEAR EVOLUTION EQUATIONS

R. Temam

We are considering, here, semi-linear evolution equations of the type

du(1d

(0.1) a() + Au(t) = g(t,u), 0 < t < T

(0.2) u(0) = U

and we are interested to determine in what sense the initial condition (0.2) is achieved,

i.e., to determine the best space in which

(0.3) u(t) - u0, as t - 0

We assume that A is a linear unbounded operator in a Hilbert space H with domain D(A),

and that g is a smooth function on [0,T] x D(A), dominated in some sense by A. The

precise assumptions are described later on.

The realization of the convergence (0.3) in a space smaller than H, is a problem

connected with the regularity near t = 0 of the solutions of (0.1) (0.2) and is not in

general expected even in the simple case of the linear heat equation. However, it is known

for linear equations (g(t,u) E g(t)), that if u0 and g satisfy some compatibility con-

ditions then u is more regular at time t = 0 and the convergence (0.3) is achieved in a

space better than H, cf. Friedman (51, Ladyzhenskaya-Solonnikov-Uralceva [81, Rauch-

Massey [11], Smale [12].

Our task is to determine the compatibility conditions which guarantee the regularity

near t = 0 of the solutions of (0.1) (0.2). Actually we will show that under appropriate

assumptions, some very simple and natural necessary conditions of regularity, are also suffi-

cient. Some examples are given and in particular our results apply to the evolution Navier-

Stokes equations for which they seem to be new. In the case of Navier-Stokes equations (or

even of the linearized Stokes equations) the compatibility conditions on u0 are of a global

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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type and are totally unusual. Besides the intrinsic interest of this result we had some other

motivations in doing this work, which will be developed elsewhere (in particular the extension

of the results of [3] from the space periodic case to the case of the flow in a domain with

boundary, and the numerical approximation of the evolution Navier-Stokes equations). We

believe that the method is general and applies to many equations.

-2-



1. Preliminaries

1.1. Notations

Let H be a real Hilbert space, and A a linear self-adjoint operator from D(A) into

H, where D(A) - the domain of A is a subspace of H. We assume that A is an isomor-

phism from D(A) (equipped with the graph norm) onto H, that A- ' is a linear compact

operator in H and that

(1.1) (Au,u) > 0, Vu e D(A), u 0 0

One can then define the powers A0 Of A for any a e 3R, with domain D(A ) p D(A )

is a Hilbert space for the norm IA'uIH and A is an isomorphism from D(A0 ) onto H.

We set

(1.2) V D(A 2), R

and in particular V - V1 , H - V0 . For a > 0 the space V can be identified to the dual

(V)' of V. We denote by 1'i the norm in Va; 11 the norm in H.

It is well-known that for T > 0, and f and u0 given, satisfying

2
(1.3) f c L (0,T; V'), u0 c H

the initial value problem

du
(1.4) C(t) + Au(t) - f(t), 0 < t < T

dt

(1.5) u(0) w u
i0

possesses a unique solution u which satisfies

(1.6) u L 2(0,T, V) n C(U0,T]; H)

which implies

(1.7) ut) - u0 in H as t - 0

If furthermore

2 E0T(1.9) f e L (0,T; H), u0  V

-3-



then u satisfies

(1.9) u E L 2(0,T; D(A)) n C([O,T]; V)

and

(1.10) u(t) - u0  in V as t - 0

Now if U0 E V , m > 3, it is not true, in general, that u(t) * u0 in V , as

t - 0, even if f E 0. The necessary and sufficient conditions that u0  and f

must satisfy in order that u(t) - u0 in a norm stronger than the norm of V are given in

(8] [12] for special classes of operators A. We intend here to extend these results to

general operators A and then to nonlinear equations of evolution.

1.2. Hypotheses

Besides the scale of spaces V , we introduce a family of Hilbert spaces E, mi E IN,

with

(1.11) Era+ 1 c E r, Vm E IN, the injection being continuous, and E0 = H

(1.12) Vm is a closed subspace of Em, vm E IN, the norm induced by Em on Vm being equi-

valent to 1-m.

We are also given a linear operator A satisfying

(1.13) A is continuous from E into Er, in > 0,
mn+2 in -

(1.14) A is an isoiorphism from Er+2 n V onto Em , Vm > 0,

(1.15) Au = Au, VU E V , m > 2.
( 1 )

-i
We denote by G the inverse A of A which is linear continuous from V onto

Ve+ 2 , Va c 1R. Because of (1.11) (1.14) (1.15),

(1.16) GAu = u, Vu E Em+ 2 n V, m > 0

while, in general, GAu # u, for an arbitrary u in Em+2 , m ' 0.

In the applications the E 's are Sobolev type spaces, A is the differential operator,
m

A the abstract operator associated to A; cf the examples.

-4-



We then have the following scheme

Em C E1 C E0

(1.17) U u H
Vm c V c= - V' V = V,

Example 1

We show how the previous assumptions are satisfied in the easy case of the heat equation

au
(1.18) -T Au = f in 0 x (0,T)

where 0 is a bounded open set of IRn with boundary r. New examples are described in

Section 2.3.
L2()

We assume that r is a C manifold of dimension n - 1 and we set H = L (Q)

D(A) = H1 (0) n H 2(0), Au = -6u, Viu c D(A), and E = Hm(,), Ym > 0, Au = -Au, Yu E H (0).

0 m_

The operator A is an isomorphism from D(A) onto H, because of the regularity theory for

elliptic boundary value problems (cf. Agmon-Douglis-Nirenberg [l]), and assumption (1.14) also

follows from [I). It is clear that V1  is a closed sukspace of E1 , V2 = D(A) is a closed

subspace of E2 : assumption (1.12) for m > 2 follows then from this remark, the definition

of A and (1.14). All the other assumptions are trivial or well-known. The spaces V

and Em  are different for m > 2. For instance V4 = D(A) = {u E 4 = H4 (0), u Au 0

on r}.

1.3. The successive derivatives of u.

For any integer m, we denote by W the spacem

div
Wm = {v E C([O,T]; E a), Edj E C([O,T]; E m2j), j = 1.. I

where £ is the integer part of m

The following remark will be useful.

Lemma 1.1.

We assume that (1.8) is satisfied and that, for some m > 2,

-5-



(1.19) E Wn 2 ,

and the solution u of (1.4) (1.5) satisfies

(1.20) u E C([0,T]; Em

Then

(1.21) u E W

Proof

Due to (1.15), the equation (1.4) can be rewritten

(1.22) du + Au =fdt

Because of (1.19) (1.20) (1.13),

d~u=f _ Au e C([O,T] ; Em 2 )

d

Applying then the operator d- A to each member of (1.22), we get (1 )

A~ Au (d _ A) f
dt

Whence, with (1.19) (1.20) (1.13)

d u = A2u + (-d_ - A)f e C([0,T]; E 4)dt2  dt -

d
More generally, with 6 = d'

(1.23) - ++ = (6,A)(6 + A) = (6 + A)a (6,A)

where

(1.24) a. (6,A) = (-6)iAj-
i=0

and therefore, for j 0.-i,

(1.25) (-l)j+I dJ+lu . AJ+Iu C 4j(-,A)f
dtJ+l 

dt

(1)The time derivatives are understood in the sense of vector valued distributions.
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and we infer from (1.19) (1.20) (1.13) that the right-hand side of (1.25) belongs to

C([0,T]; E m2 -2 ) and the result follows.

Remark 1.1

Under the assumptions of Lemmna 1.1 one can compute all the derivatives

Cj t), j = ,.,.,t E [0,T]

dt
3

in term of u~t) and the data f. This can be obtained by differentiating Z. 1 times the

equation (1.4) to obtain

2
(1.26) du du = df

dt 
2  dt dt

d3 u 2 d2f
3 2Lu 2' etc.

dt 3 dt 2 dt2

du & 1 u
and then eliminating Tt " dt jl More directly, with (1.25) we get

(1.27) (_l) j+l - ~(t) =Au(t) - P .(f)(t), j =0,...,1-1, t E [0,T]

where we set

(1.28) 0 (f) (-A)f t (- -)Af
j dt' i=0 d

In particular at t =0

(1.29) d j~1 u (0) =(-1) j~l Aj~lu + (-1) i, (f)
j~l 0

where

(1.30) M.f P MHO()]0

-7-
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2. Linear problems

2.1. The result in the linear case.

Theorem 2.1.

The assumptions are those of Section 1.1 and 1.2 and we assume that for some m > 2

(2.1) U0 c Em n D(A), f E Wm 2

(L 2(0,T; H) if m 2k + 1

d f(2.2)
dt 2L 2(0,T; V') if m = 2X.

Then a necessary and sufficient condition for the solution of (1.4) (1.5) to belong to Wm

is that

1 < j < if m = 2Z + 1

dt
3

1< j < - if m = 2k

the expression of the derivatives 3-u(O) in term of the data being given by formula (1.29)
dt

j

(1.30), i.e.

(2.4) d (0 ) = (-0) u 0 + j- dd
dt

3  
0=0

(j = 1...)

Two proofs of the theorem are given in Section 2.2 and 2.3, the first one simpler, the

second one giving more information.

2.2. Proof of Theorem 2.1.

It is obvious that the conditions (2.3) are necessary, assuming that f and u0  satisfy
du du

(2.1) . Indeed, if u E C([0,T]; V) and E C([0,T]; E ),p - 1, then E CC EOT] E
dt ptdu

and, since V is a closed subspace of E1 , -(t) < V for each t and in particular for
dt

t 0. The argument is the same for all the other derivatives of u, except for- when
dt

£

-8-
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m 2Z, in which case we replace E by E0 and V by H and there is no condition on

d u
d-1(0) which belongs to H.
dt

2

In order to prove that the conditions are sufficient, we differentiate equation (1.4)

j times, and we consider the following initial value problem for u 
(j )  

du

dt
3

(2.5) du
(j)  

(j) f(j)

dt A

(2.6) u
(j) 

(0) given by (2.4)

For j = l,...,2 (if m = 2k+l), or j 1.,-l, (if m = 2Z), we apply (1.9) and

get

(2.7) u ( j )  
E L 2(0,T; D(A)) n C([O,T]; V)

If m = 2Z, we infer from (2.4) and (2.7) that u
(
M (0) c H and, applying (1.6) we get

(2.) u(Z,) 2
(2.8) u (  E L (0,T; V) n C([O,T]; H)

Then by (2.1), the relations (2.5) and hypothesis (1.14) we find for m = 2£+l:

u C C([0,T]; V), u ( -  E C([0,T]; E3 )...,u C C([0,T]; E2Z+I )

and for m = 2Z

(2,) (£-[i) , u~ UT
u E C([o,T]; H), u E C([0,T]; E2),...,u C([0,T]; E 22

Whence the result.

2.3. Another proof.

We give an alternate proof of the sufficiency, i.e., that (2.1) (2.2) (2.3) imply that

the solution u of (1.4) (1.5) belongs to W . Actually, due to Lemma 1.1 we only have tom

prove that

(2.9) u E C([0,T]; E

Another simplification: we can assume that u0 = 0. If we set u =u-u f = f-Au0 , then

u0 = 0 and f satisfy (2.1) - (2.3) and u E C([o,T]; Em) if and only if u C(o,T]; Er).
m9m

-9-



The etxpressionx_ w

We set

Z-1 di
(2.10) w= I (-G ) Gf

i-0

Since f e Wm2, it is clear with (1. 12) and (1. 14) that

(2.11) W C C([0,T; E mn V)

Then we infer from assumption (2.3) the following remark

Lemma 2. 1.

(2.12) w(0) E V

Proof

We are going to show that

(2.13) w(0) = G 4Z 1 (fM

(cf the notations in Remark 1.1). Since, by assumption, M1 f E V (if m =22,+1) or H

(if M= 21), and G coincides with A- on V or H, we find that w(0) c V or
2X+1

V 21and (2.12) follows.

In order to prove (2.13), we note that we have the recurrence formula

(2.14) Mi(f = (- r)f0 p f,~
) t) f 3)+A-1(fV>0

(assuming M1 f = 0). Whence

(2.15) Gt 'f =x- M d ft + G Aqj, t-2

It follows from (1.14) (cf (1.28) (1.30)) that

(2.16) .(f M C CUO,T]; E2  ) M(f c E~ 2 2  j =0,...,1-2, E [.

and because of assumptions (2.1) and (2.3)



(f) E V n E , p = 2 if m = 2t, p = 3 if m - 2£+1

But GA is the identity on V N E2 or (V n E ) and therefore

G xA* 2 f) = G l- 2 (f)

By reiterating the argument until j = 0, we arrive at (2.13).
0

The function v = u-w

The difference v = u-w is solution of an evolution equation which is easy to determine:

+ A) = f - + A)W
dt dt

£-i i+l 1-1 i
=f +I Gt f - .1A(-G-)t Gf

ii t0

Since, by (2.1), f(t) E H Vt E [0,T] and AG is the identity on H, we get

dv X d 1-1
d + Av = f + I (-G e) f - t (-G -) f

j=l j=O

(-G -;) f

and v is solution to the initial value problem

(2.17) dv + Av = (-G)I 
d I f

dt dtI

(2.18) v(0) = -w(0)

By lemma 2.1, -w(O) e V and, by assumption (2.2), the right-hand side of (2.17)m

belongs to L2(0,T; VM) If we apply the classical theorem on linear evolution equations

as in (1.3) - (1.6), with V, H and V' replaced by Vm+l , Vm  and VM-, we get that

(2.19) The problem (2.17) (2.18) possesses a unique solution

v L2 (0,T; V m+) n C([O,T); Vm

Since by (1.13) Vm  is a closed subspace of Em , v E C([O,T]; E m ) and then using

(2.11) we conclude that u satisfies (2.9).

-11-



The proof of Theorem 2.1 is complete.
0

2.3. Examples.

We study an equation associated to a linear operator of the fourth order and the linear

Stokes equations. We assume that:

(2.20) 0 is an open bounded set of JR whose boundary F is a manifold of class

Cm + 2 of dimension n - 1.

Example 2.1.

2u + A2 u = f in 0 x (0,T)
at

(2.21) u = Au 0 on F x (O,T)

u(0) = u0  .

We set H = L (0), V = H (0) n H (Q), D(A) = {u E H (Q), u Au = 0 on r}, Au = A u,

2m 2
E = H (Q), Au =a u.m

All the assumptions concerning the spaces and operators are clearly satisfied, the main

one, (1.14), following from [l].

For m = 2, if u0 and f satisfy (2.1) (2.2), then (2.3) is automatically satisfied

and Theorem 2.1 gives that u E C([0,T]; D(A)) which is well-known. For m = 4, assuming

(2.1) (2.2), the necessary and sufficient condition for u to be in C([O,T]; HB(2)) is

that

2
(2.22) -A2u0 + f(O) = 0 on r

The left-hand side of (2.22) must belong to H4 (0) n H1(M) and, in particular, must not

belong to D(A).

Example 2.2: Stokes problem.

The unknown functions are u = (ul,... u) and p solutions to:
1 n

- vAu + grad p = f in 0 x (0,T)

div u 0 in Q x (0,T)

(2.23) u = 0 on P x (0,T)

u(x,0) =u0(x), x E

-12-
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We set (cf [14])

2 n-H f {u E L (Q) n
, div u 0, u.N 0 o on r ,

N the unit outward normal on r,

V = {u E H0(Q)n, div u = 0), D(A) = H
2 
(Q) n V

We denote by P the orthogonal projector in L 2() n onto H, and for u E D(A), we set

(2.24) Au - -vP u

It follows from the Cattabriga-solonnikov-Vorovich-Yudovich theorem [2-12-14], that A is an

isomorphism from D(A) onto H. We set also E M - H m() n n H and again for u E Em , m > 2,inm

Au - -vPAu. The details of the proofs of the assumptions of Sections 1.1 and 1.2 can be

found in [14]. In particular (1.13) follows (cf [14] p. 13) from the fact that

(2.25) P is linear continuous from HM(0) n  into H(,)n n H, VM > 0.

We recall [14] that the orthogonal .1 of H in L 2 ( ) n is

(2.26) H.1 fi {u - grad q, q E H1 () ,

and then by applying the operator P to both members of the first relation in (2.23), the

pressure p disappears and we are left with the functional form of (2.23):

du Au = f

(2.27) 
dt

u(O) - u0

(we assume as usual that Pf = f).

Theorem 2.1 applies. For m - 2, E - 1, we recover a classical result: if u0 E D(A),
L2 df 2

f E L (0,T; H), E L2 (0,T; V'), then (2.27) possesses a unique solution u which belongs

in particular to C([O,T]; D(A)).

For m - 3 or 4 we get the following:

Theorem 2.2.

We assume that u0 E H 3()
n n V, f E C([0,T]; H (0) n n H), f E L 2(0,T; H), then the

3 nt
solution u of (2.23) (or (2.27)) belongs to C([0,T]; H (Q) n V) if and only if

-13-
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(2.28) vPAu0 + f(0) = 0 on r
02

If U0 E H4(Q) n V, f c C([0,T]; 2]; n ! CO H), d E L2H(0,T; V'),
dt4

then (2.28) is necessary and sufficient for u to belong to C([O,T]; H (,,)n n V).

Proof

du"0
In both cases, applying Theorem 2.1, we just have to write that !-(0) V. Using (2.17),

dt

we find

du
(2.29) -(0) = vPAu + f(O)

dt 0

1 n 2 nwhich already belongs to H (Q) n H (if m = 3) or H (0) n H (if m = 4). Then the

expression (2.29) belongs to V if and only if its trace on r vanishes.

Remark 2.3

Let q be the solution to the Neumann problem

SAq 0 in 9
(2.30) {~ o

"AUo'N onr

Then cf (14], Au0 = Au0 - Vq and (2.28) amounts to:

(2.31) VAu 0 - vAq + f(0) = 0 on r

This is equivalent to a condition liven by J. G. Heywood (6].

2.4. Comments

i) Provided the spaces Vm are properly defined, the assumption that A is self-adjoint

is not necessary for Theorem 2.1 (using the proof in Section 2.2).

ii) Under some appropriate assumptions, Theorem 2.1 and the proof in Section 2.2 extend to

the case where the operator A depends on t (with D(A(t)) -D(A(O)) independent of t).

The result is essentially the same, except that the expression (2.4) of the derivatives

dJu(0) is not valid anymore.
dt

3

-14-



iii) Under the assumptions of Theorem 2.1, but with (2.3) not satisfied, the proof in

Section 2.3 allows us to split the difference v = u-w into the sum of two terms vl, v2 ,

respectively solutions of

dv1  tdlf
+ Av (-G) dtf
dt dt 1

(2.32)
v1(0) 0 0

I dv 2 =
-v2 + Av2 = 0

(2.33)
v2 (0) = -w(0)

It is still true that w E C([O,T]; E m ) , v E C([0,T]; V ) but v2 is not in

C([0,T]; V m ) since w(O) Vm . The expansion of v2 in the basis of eigenfunctions of A

gives us, in this case, precise informations on the singularity of u at t = 0.

iv). The proof of Theorem 2.1 given in Section 2.3 generaliLes that of Smale [12]. Example

2.2 and points i) and ii) above answer to questions in [12].

-15-
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3. Nonlinear problems

3.1. Hypotheses

In this section we consider nonlinear evolution equations of the type

(3.1) u( + Au(t) = g(t,u(t)), 0 < t < T

(3.2) u(O) = U0

all the assumptions of Sections 1.1 and 1.2 on A and H being maintained. Although more

general equations can be handled, we will assume for simplicity that

(3.3) g(t,u) = f(t) - B(u)

where B(u) = B(u,u) and B(u,v) is a bilinear continuous operator from V x V into V'

and furthermore(
1
)

(3.4) (B(u,v),v) > 0, u,v E V

(3.5) B(E 1 X Em+l) c Em, for m > I

(3.6) (B(u,v),v) can be extended as a bilinear

continuous form on E X Es+l x E , with

11 2 33
s. > 0 and sI + s2 + s3 > or

3Si > 0 and s +s 2 + s 3 _
1 1 2 3-2

It is well-known that under these assumptions, for f and u0  given

(3.7) f E L 2(0,T; H), u0 E V

there exists T,, 0 < T. < T and a unique function u

(3.8) u E L 2(0,!,; D(A)) n C({0,T.]; V)

which satisfies (3.1) (3.2). By changing the notation, we can assume that T* = T.

(1) These assumptions are satisfied by the nonlinear Navier-Stokes operator, and related

operators, cf. Section.

-16-



3.2. The result in the nonlinear case

We have the following analog of Theorem 2.1:

Theorem 3.1

We assume that the hypotheses of Section 1.1, 1.2 and (3.3) - (3.7) are satisfied and

that for some m > 2

(3.9) U0 E E n D(A), f E W_ 2

(.£f f L 2(0,T; H) if m - 2Z+l

(1 L2 (0,T; V') if m -2

Then a necessary and sufficient condition for the solution u of (3.1) (3.2) to belong

to W is that
(1 )

- m

dju i< j <£ if m =22£+.

(3.11) 
d- j(0) E V for1= 

2

dt 1 < j < t-1 if m - 2L

Proof

i) We can prove as in Theorem 2.1 that the conditions (3.11) are necessary, provided we

check that the derivatives

(3.12) u(J)(0) E E 2 , J = 1..

when (3.9) is satisfied

By successive differentiations of (3.1) we find

(3.13) d +Au(j) +8J )  f(J)

(j) d= 
+  +

where we set ( J, 8(t) = B(u(t)) so that
dt

9

(3.14) 8 ( ) (.)B(u (J-i),u(i)
i=0

(1)The expression of the derivatives dLu(0) in term of the data uo, f, are given by the

dti
recurrent formula (3.15).

-17-
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Now by (1.13) (3.5) and (3.9), B(0) = B(u(O)) E E and
rn-i

u'(0) = -Au(0) - B(u(0)) + f(0) £ Erm- 2

Similarly, if m > 4:

u"(O) - -Au'(0) - B(u'(0),u(0)) - B(u(O),u'(0)) + f'(0) E E m_4

The proof continues by induction on j and using (1.13) and (3.5), shows that:

(3.15) u 0 ) (0) - -Au 0 - l ) (0) - 40 ( )(u01) (), u (i) )

+ f 0-1) (0) c E_2 ,

for j -i.

ii) We now prove the Lufficiency of conditions (3.11), as in Section 2.2. For j = 1, the

equation
(u1) u1

(3.16) dt + Au + B(u,u 1 ) + B(u 1),u) . f'
(3.1) ,dt

(u(1 ) - u') together with u(I ) (0) given by (3.15) and belonging to V, allow us to show

that

(3.17) u( ) E L 2(0,T; D(A)) n C([0,T]; V)

We continue by induction; once we establish that

(3.18) u ( j )  L2 (0,T; D(A)) n C([O,T]; V), j =

we consider the equation (3.13) (3.14) with j = Z and u (. (0) given by (3.15) and belong-

ing to V (if m = 29+1) or to H (if m = 2). This allows us to show that

(3.19) u4 (0 c L 2 (0,T; D(A)) n C([0,T]; V) if m = 2+I,

L L2 (0,T; V) n C([0,TI; H) if m = 2t

The next step consists in proving that

(3.20) u(j )  e C([O,Tl; D(A)), for j = ,.... -l

-18-



For that purpose we write (3.13) (3.14) in the form

(3.21) Au( j ) = -u ( j +l ) + i ) 2) + f(j)

i-0

Because of (3.6) B is a bilinear continuous form on V x V with value in V_1/2- There-

fore, by (3.18), for i - 0,...,j, and j OP0...,-i:

(3.22) B(u(i) ui)) C([O,T]; V /2

Since A is an isomorphism from V3/2 onto V_1/2' (3.21) implies then, that

u(j)  C(0,T); V3/ 2) . Using again (3.6) we get, for the same values of i and j as in

(3.22):

B(u( -i) ,u ) E C([O,T]; H)

and (3.20) follows.

Finally, we show that u 4 W m , i.e.

(3.23) U E C 0,T; E_2 ), j = 1. ...

For j - 1, this is included in (3.19). Por j = Z-1, using (3.5) and (3.20) we find that

(j-i) Mii()B(u( I E C([0,T]; E I
i=0

and then (1.11) (3.21) and (3.19) show that u ( L- 1 ) c C([O,T]; E m_2+2). The proof continues

then by induction for j - L-2,...,0.

Theorem 3.1 is proved.
0

3.3. Applications to Navier-Stokes equation

Instead of (2.23), we consider now the full Navier-Stokes equations

au n au
t- VAu + u i ax + grad p = f in Q x (0,T)

i=l i

div u - 0 in 0 x (0,T)
(3.24) u = 0 on r x (O,T)

u(x,0) u0 (x)

-19-



The functional setting is the same as in Section 2.3 and we write

n a
(3.25) B(u,v) =P (u. -T B(u) =B(u,u)

i i ax

so that (3.24) becomes

L + Au + B (u) = f

(3.26)

LuCO)=U0
The properties (3.4) - (3.6) are well known, cf [14]. Instead of (3.4) we have

(B (u, v) , v) = 0, V u,v E V .

Result (3.6) is proved in [4], and (3.5) follows from the fact that H m (Q) is a multiplica-

tive algebra if m > 2 and the dimension of space n is < 3:

(If u, v E g m(Q), m > 2, n < 3, then
(3.27) i.u v E Hm() and luviM < C () ul _ VI

Therefore if u, v E H n() m > 2, then u. and ai g E Hm(Q), u a E H ( M) and
I ax ' a~x.

since P maps H m(0) n n H into itself, B(u,v) is in H M(0)n n H. Property (3.7) (3.8)

is well known too, cf [14], p. 316.

Theorem 3.1 gives for instance the following (m = 3 or 4).

Theorem 3.2

We assume that U0 e H (0M) n V, f E CU[O,T]; H 1(Q)- nH), cL 2 0,T; H), n = 2 or 3,

then the solution u of (3.24) (or (3.26)) defined on some interval 10,T,,], 0 < T* < T

belongs to CU[O,T*]; H 3(,)n n V) if and only if

n au0(3.28) \)PAU0 + P(C + f(O) = 0 on r

if U0 E H 4(0) nn V, f E C([0,T]; H (06) nn H),- L CU0, T]; H), F ef L 2C(,T; V')0 ~dt2
dt2

4
then (3.28) is necessary and sufficient for u to belong to C([0,T~] H (Q) n V).

Th3orem 3.2 follows immnediately from Theorem 3.1.
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Remark 3.1

If u0 C C(O)n n V, if f E C_(0 - [0,T])n n H and the conditions (3.11) are satisfied

for all m, then u E C_(5 x [0,T])
n 

(T sufficiently small if n = 3).(l)

Remark 3.2

If u0 E H, f E C'(5 x [0,T]) n H, the assumptions of Theorem 3.1 are not satisfied

but we can prove, using Theorem 3.1 that u c Cw(5 x (0,T])
n 

(T sufficiently small if n = 3).

We proceed as follows:

2
- We have a weak solution u of (3.24) or (3.26) in L (0,T; H) n L (0,T; V) (cf [14]).

We choose t arbitrarily small such that u(t 0 ) E V;

- By (3.7) (3.8) we find that there exists T,, to < T, < T, such that the restriction

of u to [to , T,] satisfy (3.1). This restriction is still denoted u.

- We choose tI > to, tI < T,, t1 arbitrarily close from to, such that u(t1 ) E D(A).

Then (3.26) shows as for (3.12) that u'(tI) E H. We conclude as in Theorem 3.1 that

u' e L 2(tI,T,; V) n C([t ,T*]; H).

- We choose t2 > ti , t2 < T,, t2 - tI arbitrarily small, such that u'(t 2 ) E V, and

conclude that u' E L2(t2,T,; D(A)) n C(t 2,T, ; V. We then choose t2 < t3 < T*, t3 - t2

arbitrarily small such that u'(t 3) E D(A), etc ........

Finally we get that u E C([t£,T*]; E ), for m = 2Z, tk arbitrarily close from 0,

and m arbitrarily large. The regularity follows. The C regularity in Q x (0,T) was

proved in 0. A. Ladyzhenskaya [8].

Remark 3.3

Theorem 3.1 can be easily extended to more general semi-linear equations. We did not

present a more general abstract theorem to avoid purely technical difficulties.

Let us consider for instance a nonlinear perturbation of Example 2.1 in Section 2.3.

au + A
2
u + 2p+1 = f in 0 x (0,T)

(3.29) u = Au = 0 on r x (0,T)

u(0) = u

(1) Remarks 3.7 and 3.8 p. 303 and 307 of [14] which overlook the compatibility con-

ditions are not correct. To make the result correct one should replace Q by Q on p. 303
1.4.
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ML.

with 2p + 2 < _Lso that L 2p+2 01 c H2 (0). Then a necessary and sufficient condition for
n-2

8
u to be in C([O , T; H (9)) is that

-A2u -u 2 + f(o) =0 on r
0 0

(assuming (3.9) (3.10) with m =4).
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